Deformation Correction in Ultrasound Imaging
نویسندگان
چکیده
Tissue deformation in ultrasound imaging is an inevitable phenomenon and poses challenges to the development of many techniques related to ultrasound image registration, including multimodal image fusion, freehand three-dimensional ultrasound, and quantitative measurement of tissue geometry. In this thesis, a novel trajectory-based method to correct tissue deformation in ultrasound B-mode imaging and elastography is developed in the framework of elastography. To characterize the change of tissue deformation with contact force, a force sensor is used to provide contact force measurement. Correlation-based displacement estimation techniques are applied to ultrasound images acquired under different contact forces. Based on the estimation results, a two-dimensional trajectory field is constructed, where pixel coordinates in each scan are plotted against the corresponding contact force. Interpolation or extrapolation by polynomial curve fitting is then applied to each trajectory to estimate the image under a specified contact force. The performance of displacement estimation and polynomial curve fitting are analyzed in a simulation framework incorporating FEM and ultrasound simulation. Influences of parameter selection are also examined. It is found that in displacement estimation, the coarse-to-fine approach outperforms single-level template search, and correlation filtering in coarse scale provides noticeable improvement in estimation performance. The strategies of image acquisition and order selection in polynomial curve fitting are also evaluated. Additionally, a finer force resolution is found to give better performance in predicting pixel positions under zero force. Deformation correction in both B-mode imaging and elastography is demonstrated through simulation and in-vitro experiments. The performance of correction is quantified by translational offset and area estimation of the tissue inclusions. It is found that, for both B-mode and elastography images, those performance metrics are significantly improved after correction. Moreover, it is shown that a finer resolution in force control gives better performance in deformation correction, which agrees with the analysis of polynomial curve fitting. Thesis Supervisor: Brian W. Anthony Title: Research Scientist, Department of Mechanical Engineering
منابع مشابه
Evaluation of model-based deformation correction in image-guided liver surgery via tracked intraoperative ultrasound.
Soft-tissue deformation represents a significant error source in current surgical navigation systems used for open hepatic procedures. While numerous algorithms have been proposed to rectify the tissue deformation that is encountered during open liver surgery, clinical validation of the proposed methods has been limited to surface-based metrics, and subsurface validation has largely been perfor...
متن کاملTrajectory-based Deformation Correction in Ultrasound Images
Tissue deformation in ultrasound imaging poses a challenge to the development of many image registration techniques, including multimodal image fusion, multi-angle compound image and freehand three-dimensional ultrasound. Although deformation correction methods are desired to provide images of uncompressed tissue structure, they have not been well-studied. A novel trajectory-based method to cor...
متن کاملValidation of model-based deformation correction in image-guided liver surgery via tracked intraoperative ultrasound: preliminary method and results
Soft tissue deformation represents a significant error source in current surgical navigation systems used for open hepatic procedures. While numerous algorithms have been proposed to rectify the tissue deformation that is encountered during open liver surgery, clinical validation of the proposed methods has been limited to surface based metrics and sub-surface validation has largely been perfor...
متن کاملInvestigation of Shape Functions Role on the Mesh-free Method Application in Soft Tissue Elastography
In current study, The Mesh-free method based on weak-form formulation coupled with the ultrasound imaging technique is developed. This problem consists in computing the deformation of an elastic non-homogenous phantom by numerical methods (both Mesh-free and Finite Element) and converge their results to the measured deformation by the ultrasound. The shape functions of Mesh-free are approximate...
متن کاملModel-based correction of tissue compression for tracked ultrasound in soft tissue image-guided surgery.
Acquisition of ultrasound data negatively affects image registration accuracy during image-guided therapy because of tissue compression by the probe. We present a novel compression correction method that models sub-surface tissue displacement resulting from application of a tracked probe to the tissue surface. Patient landmarks are first used to register the probe pose to pre-operative imaging....
متن کامل